Vytlačiť
1. Counting hypermaps by Egorychev’s method
Názov | Counting hypermaps by Egorychev’s method |
---|---|
Aut.údaje | Alexander Mednykh, Roman Nedela |
Autor | Mednykh Alexander 1953- (50%) UMBFP10 - Katedra matematiky |
Spoluautori | Nedela Roman 1960- (50%) UMBFP10 - Katedra matematiky |
Zdroj.dok. | Analysis and Mathematical Physics. Vol. 6, no. 3 (2016), pp. 301-314. - Cham : Springer Nature Switzerland AG, 2016 |
Kľúč.slová | Fuchsian groups hypermapy hypermaps matematika - mathematics |
Jazyk dok. | angličtina |
Krajina | Nemecko |
Systematika | 51 |
Anotácia | © 2015, Springer Basel.The aim of this paper is to find explicit formulae for the number of rooted hypermaps with a given number of darts on an orientable surface of genus g≤ 3. Such formulae were obtained earlier for g= 0 and g= 1 by Walsh and Arquès respectively. We first employ the Egorychev’s method of counting combinatorial sums to obtain a new version of the Arquès formula for genus g= 1. Then we apply the same approach to get new results for genus g= 2 , 3. We could do it due to recent results by Giorgetti, Walsh, and Kazarian, Zograf who derived two different, but equivalent, forms of the generating functions for the number of hypermaps of genus two and three. |
Kategória publikačnej činnosti | ADC |
Číslo archívnej kópie | 36932 |
Katal.org. | BB301 - Univerzitná knižnica Univerzity Mateja Bela v Banskej Bystrici |
Báza dát | xpca - PUBLIKAČNÁ ČINNOSŤ |
Odkazy | PERIODIKÁ-Súborný záznam periodika |