Počet záznamov: 1
T-c for homogeneous dilute Bose gases
SYS 0250720 LBL ---naa--22--------450- 005 20240627111216.5 014 $a 000173273800084 $2 CCC 014 $a 000173273800084 $2 WOS CC. SCIE 017 70
$a 10.1103/PhysRevA.65.013606 $2 DOI 100 $a 20170921 2001 101 0-
$a eng 102 $a US 200 1-
$a T-c for homogeneous dilute Bose gases $e a second-order result $f Peter Arnold, Guy Moore, Boris Tomášik 330 $a The transition temperature for a dilute, homogeneous, three-dimensional Bose gas has the expansion T-c = T-0{1 + c(1)an(1/3) + [c(2)' 1n(an(1/3)) + c(2)"]a(2)n(2/3) + O(a(3)n)}, where a is the scattering length, n the number density, and T-0 the ideal gas result. The first-order coefficient c(1) depends on nonperturbative physics. In this paper, we show that the coefficient c(2)' may be computed perturbatively. We also show that the remaining second-order coefficient c(2)" depends on non-perturbative physics but may be related, by a perturbative calculation, to quantities that have previously been measured using lattice simulations of three-dimensional O(2) scalar field theory. Making use of those simulation results, we find T(c)similar or equal toT(0){1 + (1.32+/-0.02) an(1/3) + [19.7518 1n(an(1/3)) + (75.7+/-0.4)]a(2)n(2/3) + O(a(3)n)}. 463 -1
$1 001 umb_un_cat*0293261 $1 011 $a 2469-9926 $1 011 $a 2469-9934 $1 200 1 $a Physical Review A $e covering atomic, molecular, and optical physics and quantum information $v 013606 $1 210 $a Maryland $c American Physical Society $d 2002 606 0-
$3 umb_un_auth*0170471 $a condensation 606 0-
$3 umb_un_auth*0000019 $a fyzika $X physics 615 $n 53 $a Fyzika 675 $a 53 700 -1
$3 umb_un_auth*0261664 $a Arnold $b Peter $9 34 $4 070 701 -1
$3 umb_un_auth*0262324 $a Moore $b Guy $4 070 $9 33 701 -1
$3 umb_un_auth*0120276 $a Tomášik $b Boris $p UMBFP06 $4 070 $9 33 $f 1972- $T Katedra fyziky 801 -0
$a SK $b BB301 $g AACR2 $9 unimarc sk T85 $x existuji fulltexy
Počet záznamov: 1