Počet záznamov: 1
Counting hypermaps by Egorychev’s method
SYS 0234793 005 20240606140630.4 014 $a 000381581000005 $2 CCC 014 $a 000381581000005 $2 WOS CC. SCIE 014 $a 2-s2.0-84981719244 $2 SCOPUS 017 70
$a 10.1007/s13324-015-0119-z $2 DOI 100 $a 20161018 2016 m y slo 03 ba 101 0-
$a eng 102 $a DE 200 1-
$a Counting hypermaps by Egorychev’s method $f Alexander Mednykh, Roman Nedela 330 $a © 2015, Springer Basel.The aim of this paper is to find explicit formulae for the number of rooted hypermaps with a given number of darts on an orientable surface of genus g≤ 3. Such formulae were obtained earlier for g= 0 and g= 1 by Walsh and Arquès respectively. We first employ the Egorychev’s method of counting combinatorial sums to obtain a new version of the Arquès formula for genus g= 1. Then we apply the same approach to get new results for genus g= 2 , 3. We could do it due to recent results by Giorgetti, Walsh, and Kazarian, Zograf who derived two different, but equivalent, forms of the generating functions for the number of hypermaps of genus two and three. 463 -1
$1 001 umb_un_cat*0293280 $1 011 $a 1664-2368 $1 011 $a 1664-235X $1 200 1 $a Analysis and Mathematical Physics $v Vol. 6, no. 3 (2016), pp. 301-314 $1 210 $a Cham $c Springer Nature Switzerland AG $d 2016 606 0-
$3 umb_un_auth*0226132 $a Fuchsian groups 606 0-
$3 umb_un_auth*0091065 $a hypermapy 606 0-
$3 umb_un_auth*0134058 $a hypermaps 606 0-
$3 umb_un_auth*0036218 $a matematika $X mathematics 615 $n 51 $a Matematika 675 $a 51 700 -1
$a Mednykh $b Alexander $3 umb_un_auth*0120028 $p UMBFP10 $4 070 $9 50 $f 1953- $T Katedra matematiky 701 -0
$a Nedela $b Roman $3 umb_un_auth*0001645 $p UMBFP10 $4 070 $9 50 $f 1960- $T Katedra matematiky 801 -0
$a SK $b BB301 $g AACR2 $9 unimarc sk T85 $x existuji fulltexy
Počet záznamov: 1