Počet záznamov: 1  

Counting hypermaps by Egorychev’s method

  1. SYS0234793
    005
      
    20240606140630.4
    014
      
    $a 000381581000005 $2 CCC
    014
      
    $a 000381581000005 $2 WOS CC. SCIE
    014
      
    $a 2-s2.0-84981719244 $2 SCOPUS
    017
    70
    $a 10.1007/s13324-015-0119-z $2 DOI
    100
      
    $a 20161018 2016 m y slo 03 ba
    101
    0-
    $a eng
    102
      
    $a DE
    200
    1-
    $a Counting hypermaps by Egorychev’s method $f Alexander Mednykh, Roman Nedela
    330
      
    $a © 2015, Springer Basel.The aim of this paper is to find explicit formulae for the number of rooted hypermaps with a given number of darts on an orientable surface of genus g≤ 3. Such formulae were obtained earlier for g= 0 and g= 1 by Walsh and Arquès respectively. We first employ the Egorychev’s method of counting combinatorial sums to obtain a new version of the Arquès formula for genus g= 1. Then we apply the same approach to get new results for genus g= 2 , 3. We could do it due to recent results by Giorgetti, Walsh, and Kazarian, Zograf who derived two different, but equivalent, forms of the generating functions for the number of hypermaps of genus two and three.
    463
    -1
    $1 001 umb_un_cat*0293280 $1 011 $a 1664-2368 $1 011 $a 1664-235X $1 200 1 $a Analysis and Mathematical Physics $v Vol. 6, no. 3 (2016), pp. 301-314 $1 210 $a Cham $c Springer Nature Switzerland AG $d 2016
    606
    0-
    $3 umb_un_auth*0226132 $a Fuchsian groups
    606
    0-
    $3 umb_un_auth*0091065 $a hypermapy
    606
    0-
    $3 umb_un_auth*0134058 $a hypermaps
    606
    0-
    $3 umb_un_auth*0036218 $a matematika $X mathematics
    615
      
    $n 51 $a Matematika
    675
      
    $a 51
    700
    -1
    $a Mednykh $b Alexander $3 umb_un_auth*0120028 $p UMBFP10 $4 070 $9 50 $f 1953- $T Katedra matematiky
    701
    -0
    $a Nedela $b Roman $3 umb_un_auth*0001645 $p UMBFP10 $4 070 $9 50 $f 1960- $T Katedra matematiky
    801
    -0
    $a SK $b BB301 $g AACR2 $9 unimarc sk
    T85
      
    $x existuji fulltexy
Počet záznamov: 1  

  Tieto stránky využívajú súbory cookies, ktoré uľahčujú ich prezeranie. Ďalšie informácie o tom ako používame cookies.