Počet záznamov: 1  

Double machine learning for sample selection models

  1. SYS0330014
    LBL
      
    -----naa--22--------450-
    005
      
    20250320121926.9
    014
      
    $a 001244132800004 $2 CCC
    014
      
    $a 001109358000001 $2 WOS CC. SCIE
    014
      
    $a 001109358000001 $2 WOS CC. SSCI
    014
      
    $a DATA2023193028065941 $2 DCI
    014
      
    $a 2-s2.0-85178064719 $2 SCOPUS
    017
    70
    $a 10.1080/07350015.2023.2271071 $2 DOI
    035
      
    $a biblio/1190759 $2 CREPC2
    100
      
    $a 20240708d2024 m y slo 03 ba
    101
    0-
    $a eng
    102
      
    $a US
    200
    1-
    $a Double machine learning for sample selection models $f Michela Bia ... [et al.]
    330
      
    $a This article considers the evaluation of discretely distributed treatments when outcomes are only observed for a subpopulation due to sample selection or outcome attrition. For identification, we combine a selection-on-observables assumption for treatment assignment with either selection-on-observables or instrumental variable assumptions concerning the outcome attrition/sample selection process. We also consider dynamic confounding, meaning that covariates that jointly affect sample selection and the outcome may (at least partly) be influenced by the treatment. To control in a data-driven way for a potentially high dimensional set of pre- and/or post-treatment covariates, we adapt the double machine learning framework for treatment evaluation to sample selection problems. We make use of (a) Neyman-orthogonal, doubly robust, and efficient score functions, which imply the robustness of treatment effect estimation to moderate regularization biases in the machine learning-based estimation of the outcome, treatment, or sample selection models and (b) sample splitting (or cross-fitting) to prevent overfitting bias. We demonstrate that the proposed estimators are asymptotically normal and root-n consistent and investigate their finite sample properties in a simulation study. We also apply our proposed methodology to the Job Corps data. The estimator is available in the causalweight package for the statistical software R.
    463
    -1
    $1 001 umb_un_cat*0330056 $1 011 $a 0735-0015 $1 011 $a 1537-2707 $1 200 1 $a Journal of business & economic statistics $v Vol. 42, no. 3 (2024), pp. 958-969 $1 210 $a Philadelphia $c Taylor & Francis $d 2024
    606
    0-
    $3 umb_un_auth*0248297 $a strojové učenie $X machine learning
    606
    0-
    $3 umb_un_auth*0052417 $a odhadovanie $X estimating
    608
      
    $3 umb_un_auth*0273282 $a články $X journal articles
    700
    -1
    $3 umb_un_auth*0306068 $a Bia $b Michela $4 070 $9 34
    701
    -1
    $3 umb_un_auth*0249133 $a Huber $b Martin $4 070 $9 33
    701
    -1
    $3 umb_un_auth*0249128 $a Lafférs $b Lukáš $p UMBFP10 $4 070 $9 33 $f 1986- $T Katedra matematiky
    801
      
    $a SK $b BB301 $g AACR2 $9 unimarc sk
    856
      
    $u https://doi.org/10.1080/07350015.2023.2271071 $a Link na plný text
    856
      
    $u https://www.tandfonline.com/doi/full/10.1080/07350015.2023.2271071 $a Link na plný text
    T85
      
    $x existuji fulltexy
Počet záznamov: 1  

  Tieto stránky využívajú súbory cookies, ktoré uľahčujú ich prezeranie. Ďalšie informácie o tom ako používame cookies.