Počet záznamov: 1  

Archimedean maps of higher genera

  1. SYS0164497
    005
      
    20241206091350.1
    014
      
    $a 000299405300025 $2 CCC
    014
      
    $a 000299405300025 $2 WOS CC. SCIE
    014
      
    $a 2-s2.0-84858972466 $2 SCOPUS
    017
    70
    $a 10.1090/S0025-5718-2011-02502-0 $2 DOI
    100
      
    $a 20120605d2012 m y slo 03 ba
    101
    0-
    $a eng
    102
      
    $a US
    200
    1-
    $a Archimedean maps of higher genera $f Ján Karabáš, Roman Nedela
    330
      
    $a The paper focuses on the classification of vertex-transitive polyhedral maps of genus from 2 to 4. These maps naturally generalise the spherical maps associated with the classical Archimedean solids. Our analysis is based on the fact that each Archimedean map on an orientable surface projects onto a one- or a two-vertex quotient map. For a given genus g>= 2 the number of quotients to consider is bounded by a function of g. All Archimedean maps of genus g can be reconstructed from these quotients as regular covers with covering transformation group isomorphic to a group G from a set of g-admissible groups. Since the lists of groups acting on surfaces of genus 2,3, and 4 are known, the problem can be solved by a computer-aided case-to-case analysis
    463
    -1
    $1 001 umb_un_cat*0309987 $1 011 $a 0025-5718 $1 011 $a 1088-6842 $1 200 1 $a Mathematics of Computation $v Vol. 81, no. 277 (2012), pp. 569-583 $1 210 $a Providence $c American Mathematical Society $d 2012
    606
    0-
    $3 umb_un_auth*0206772 $a polyhedron
    606
    0-
    $3 umb_un_auth*0125115 $a Archimedean solid
    606
    0-
    $3 umb_un_auth*0074439 $a surfaces
    606
    0-
    $3 umb_un_auth*0219155 $a groups
    606
    0-
    $3 umb_un_auth*0125118 $a graph embedding
    606
    0-
    $3 umb_un_auth*0116334 $a regular maps
    606
    0-
    $3 umb_un_auth*0206773 $a Cayley maps
    606
    0-
    $3 umb_un_auth*0134046 $a genus
    615
      
    $n 51 $a Matematika
    675
      
    $a 51
    700
    -0
    $3 umb_un_auth*0031992 $a Karabáš $b Ján $f 1977- $p UMBFP12 $9 50 $4 070 $T Inštitút matematiky a informatiky
    701
    -0
    $3 umb_un_auth*0001645 $a Nedela $b Roman $f 1960- $p UMBFP12 $9 50 $4 070 $T Inštitút matematiky a informatiky
    801
      
    $a SK $b BB301 $g AACR2 $9 unimarc sk
    T85
      
    $x existuji fulltexy
Počet záznamov: 1  

  Tieto stránky využívajú súbory cookies, ktoré uľahčujú ich prezeranie. Ďalšie informácie o tom ako používame cookies.