Contents | I | Preface xv Introduction and Preliminaries 1 | |---|---| | 1 | Introduction 3 | | | 1.1 Some Examples of Everyday Qualitative Reasoning 4 1.1.1 Heating Water 4 1.1.2 Does Cold Water Freeze Faster Than Warm Water? 5 1.1.3 The Seasons 5 1.1.4 Will These Collide? 6 1.1.5 Raven's Progressive Matrices 7 1.1.6 Moral Decision Making 8 1.2 The Importance of Qualitative Reasoning in Human Cognition 1.3 Overview of the Book 10 | | 2 | Representation: An Overview 13 | | | 2.1 The Importance of Structured, Relational Representations 13 2.2 Logic, Formalism, and Precision 14 2.2.1 Syntax 14 2.3 Schemas, Frames, and Cases 19 2.4 Ontologies and Knowledge Bases 20 2.5 Richness and Structure of Predicate Vocabularies 22 2.6 Summary: Evaluating Representations 23 | | 3 | Reasoning: An Overview 25 | | | 3.1 Computational Complexity and Tractability 25 3.2 Deduction, Abduction, and Induction 27 3.3 Pattern Matching and Unification 32 3.3.1 Storing and Retrieving Knowledge 33 | 8 | | 11 | Modeling | 177 | |--|----|----------|-----| |--|----|----------|-----| | 11.1 | Example: | A Steam | Propulsion | Plant | 178 | |------|----------|---------|------------|-------|-----| | | | | | | | - 11.2 Compositional Modeling 183 - 11.2.1 Modeling Criteria 184 - 11.2.2 Representing Modeling Assumptions and Constraints 185 - 11.2.3 Structural Abstractions 191 - 11.3 Model Formulation Algorithms 192 - 11.4 How Might People Do Model Formulation? 193 ## **12 Analogy in Dynamics** 197 - 12.1 Mental Models and Runnability 197 - 12.2 Human Qualitative Reasoning: First Principles - or Analogical? 200 - 12.2.1 Remembered Experience Model 203 - 12.2.2 Partial Generalization Model 204 - 12.2.3 Causally Annotated Experience Model 204 - 12.2.4 Generic Domain Theory 205 - 12.3 Similarity-Based Qualitative Simulation 206 - 12.3.1 A Prototype Similarity-Based Qualitative Simulator 206 - 12.4 Psychological Implications 214 - 12.4.1 Distribution of Reliance on Memory with Expertise 214 - 12.4.2 Differences in Novice/Expert Retrieval Patterns 215 - 12.4.3 Factors That Should Promote Expertise 215 - 12.5 Discussion 216 - 12.6 Summary 217 #### 13 Dynamics in Language 219 - 13.1 Motivation 219 - 13.2 Recasting Qualitative Representations as Linguistic Frames 220 - 13.3 How QP Theory Manifests in English 221 - 13.3.1 Quantities 221 - 13.3.2 Ordinal Relationships 225 - 13.3.3 Influences 226 - 13.3.4 Model Fragments and Processes 228 - 13.4 Evidence 229 - 13.4.1 Corpus Analysis 230 - 13.4.2 Compatibility with Other Aspects of Semantics 231 - 13.4.3 Natural-Language Understanding Examples 232 - 13.5 Other Accounts 234 #### III Space 235 ### 14 Qualitative Spatial Reasoning: A Theoretical Framework 237 - 14.1 Reasoning about Motion through Space 237 - 14.2 The Metric Diagram/Place Vocabulary Model 242 - 14.2.1 The Poverty Conjecture 243 - 14.3 Other Examples of the MD/PV Model 245 - 14.4 Categorical/Coordinate Models in Psychology 247 - 14.5 A Unified Account 249 ### 15 Qualitative Spatial Calculi 251 - 15.1 Example: Region Connection Calculus 251 - 15.2 A Collection of Calculi 255 - 15.2.1 Intersection Models of Topology 255 - 15.2.2 Distance Calculi 258 - 15.2.3 Orientation Calculi 258 - 15.3 Reasoning Issues 261 - 15.4 Summary 262 ### 16 Understanding Sketches and Diagrams 265 - 16.1 Investigations of Sketching and Diagrams 266 - 16.2 The nuSketch Model of Sketch Understanding 267 - 16.3 CogSketch: Representations and Processing 270 - 16.4 Learning Spatial Prepositions 275 - 16.5 Reasoning about Depiction 278 - 16.6 Modeling Visual Problem Solving 285 - 16.6.1 Geometric Analogies 289 - 16.6.2 Raven's Matrices 290 - 16.6.3 Oddity Task 293 - 16.6.4 What Makes an Effective Visual Problem Solver? 294 - 16.7 Summary 295 # IV Learning and Reasoning 297 ## 17 Learning and Conceptual Change 299 - 17.1 A Framework for Mental Models in Physical Domains 299 - 17.2 Learning Protohistories 301 - 17.3 Constructing First-Principles Knowledge via Protohistory Statistics 307 Continuous Processes 371 21.2 Qualitative Vision 371 | | 17.4 Distributed Knowledge, Explanation Structure, | |----|--| | | and Conceptual Change 311 | | | 17.5 Learning via Cross-Domain Analogies 317 | | | 17.6 Summary 319 | | | • | | 18 | Commonsense Reasoning 321 | | | 18.1 How Common Sense Doesn't Work 322 | | | 18.2 Some Psychological Considerations Concerning Common Sense 325 | | | 18.3 Quantitative Aspects of Common Sense 329 | | | 18.3.1 Analogical Estimation of Numerical Values 330 | | | 18.3.2 Qualitative Representations Can Enhance Similarity 331 | | | 18.3.3 Strategies for Back-of-the-Envelope Reasoning 333 | | | 18.3.4 How Well Does This Model Do? 335 | | | 18.4 Qualitative Representations in Conceptual Metaphors 335 | | | 18.5 Social Reasoning 337 | | | 18.5.1 Modeling Aspects of Emotions 337 | | | 18.5.2 Blame Assignment 339 18.5.3 Moral Decision Making 341 | | | 18.6 Summary 346 | | | 10.0 bullimary 510 | | 19 | Expert Reasoning 349 | | | 19.1 Engineering Reasoning 351 | | | 19.1.1 Analysis 351 | | | 19.1.2 Monitoring, Control, and Diagnosis 356 | | | 19.1.3 Design 360 | | | 19.1.4 System Identification 361 | | | 19.2 Scientific Modeling 362
19.3 Summary 365 | | | 19.5 Summary 505 | | ٧ | Summary and New Directions 367 | | 20 | Summary 369 | | | 20.1 Bridge between Perception and Cognition 369 20.2 Basis for Commonsense Reasoning 369 20.3 Foundation for Expert Reasoning 370 | | 21 | New Directions 371 | | 21 | | | | 21.1 Formalizing Discrete Processes and Their Interactions with | - 21.3 Qualitative Representations in Other Modalities 372 - 21.4 Qualitative Representations in Semantics 372 - 21.5 Qualitative Representations in Robotics 373 - 21.6 Cataloging the Range of Human Mental Models and Ontologies 373 - 21.7 Qualitative Representations for Social Science 374 - 21.8 Qualitative Representations in Cognitive Architecture 375 - 21.9 Multimodal Science Learning and Teaching 376 - 21.10 In Conclusion 376 Notes 377 References 385 Index 417