Number of the records: 1
On a representation of the automorphism group of a graph in a unimodular group
SYS 0302027 LBL -----naa--22--------450- 005 20240516124950.6 014 $a 000712876500025 $2 WOS CC. SCIE 014 $a 2-s2.0-85114015564 $2 SCOPUS 017 70
$a 10.1016/j.disc.2021.112606 $2 DOI 035 $a biblio/434727 $2 CREPC2 100 $a 20211004d2021 m y slo 03 ba 101 0-
$a eng 102 $a NL 200 1-
$a On a representation of the automorphism group of a graph in a unimodular group $f István Estélyi ... [et al.] 330 $a We investigate a representation of the automorphism group of a connected graph X in the group of unimodular matrices U(β) of dimension β, where β is the Betti number of graph X. We classify the graphs for which the automorphism group does not embed into U(β). It follows that if X has no pendant vertices and X is not a simple cycle, then the representation is faithful and Aut X acts faithfully on H_1(X,Z). The latter statement can be viewed as a discrete analogue of a classical Hurwitz’s theorem on Riemann surfaces of genera greater than one. 463 -1
$1 001 umb_un_cat*0303724 $1 011 $a 0012-365X $1 011 $a 1872-681X $1 200 1 $a Discrete Mathematics $v Vol. 344, no. 12 (2021), pp. [1-4] $1 210 $a Amsterdam $c Elsevier B.V. $d 2021 606 0-
$3 umb_un_auth*0036218 $a matematika $X mathematics 606 0-
$3 umb_un_auth*0039537 $a grafy $X charts $X graphs 608 $a články 700 -1
$3 umb_un_auth*0290339 $a Estélyi $b István $4 070 $9 5 701 -0
$3 umb_un_auth*0031992 $a Karabáš $b Ján $p UMBFP05 $4 070 $9 40 $f 1977- $T Katedra informatiky 701 -0
$3 umb_un_auth*0001645 $a Nedela $b Roman $4 070 $9 50 $f 1960- 701 -1
$3 umb_un_auth*0120028 $a Mednykh $b Alexander $4 070 $9 5 $f 1953- 801 $a SK $b BB301 $g AACR2 $9 unimarc sk 856 $u https://www.sciencedirect.com/science/article/pii/S0012365X21003198 $a Link na plný text T85 $x existuji fulltexy
Number of the records: 1