Number of the records: 1  

Convexity of hesitant fuzzy sets

  1. SYS0269057
    LBL
      
    01078^^^^^2200229^^^450
    005
      
    20240509132451.2
    014
      
    $a 000430493700004 $2 CCC
    014
      
    $a 000430493700004 $2 WOS CC. SCIE
    014
      
    $a 2-s2.0-85048368455 $2 SCOPUS
    017
    70
    $a 10.3233/JIFS-162204 $2 DOI
    035
      
    $a biblio/119154 $2 CREPC2
    100
      
    $a 20190409d2018 m y slo 03 ba
    101
    0-
    $a eng
    102
      
    $a NL
    200
    1-
    $a Convexity of hesitant fuzzy sets $f Vladimír Janiš, Susana Montes ... [et al.]
    330
    0-
    $a Abstract: We show that a definition of convexity based on the convexity of the score function does not guarantee preservation of convexity under intersections and provide a concept of convexity for hesitant fuzzy sets without this backdraw. We study the relationship between convex hesitant fuzzy sets and convex rough sets as their cuts
    463
    -1
    $1 001 umb_un_cat*0269740 $1 200 1 $a Journal of Intelligent & Fuzzy Systems $v Vol. 34, no. 4 (2018), pp. 2099-2102 $1 210 $a Amsterdam $c IOS Press $d 2018 $1 011 $a 1064-1246 $1 011 $a 1875-8967
    606
    0-
    $3 umb_un_auth*0037590 $a fuzzy množiny $X fuzzy sets
    606
    0-
    $3 umb_un_auth*0197306 $a konvexnosť $X convexity
    606
    0-
    $3 umb_un_auth*0136011 $a rough sets
    608
      
    $3 umb_un_auth*0273282 $a články $X journal articles
    615
      
    $n 51 $a Matematika
    675
      
    $a 51
    700
    -0
    $3 umb_un_auth*0001319 $a Janiš $b Vladimír $p UMBFP10 $4 070 $9 1 $f 1963- $T Katedra matematiky
    701
    -0
    $3 umb_un_auth*0031149 $a Montes $b Susana $4 070 $9 49
    701
    -1
    $3 umb_un_auth*0098953 $a Renčová $b Magdaléna $4 070 $9 50 $f 1975-
    801
      
    $a SK $b BB301 $g AACR2 $9 unimarc sk
    T85
      
    $x existuji fulltexy
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.