Number of the records: 1
Convexity of hesitant fuzzy sets
SYS 0269057 LBL 01078^^^^^2200229^^^450 005 20240509132451.2 014 $a 000430493700004 $2 CCC 014 $a 000430493700004 $2 WOS CC. SCIE 014 $a 2-s2.0-85048368455 $2 SCOPUS 017 70
$a 10.3233/JIFS-162204 $2 DOI 035 $a biblio/119154 $2 CREPC2 100 $a 20190409d2018 m y slo 03 ba 101 0-
$a eng 102 $a NL 200 1-
$a Convexity of hesitant fuzzy sets $f Vladimír Janiš, Susana Montes ... [et al.] 330 0-
$a Abstract: We show that a definition of convexity based on the convexity of the score function does not guarantee preservation of convexity under intersections and provide a concept of convexity for hesitant fuzzy sets without this backdraw. We study the relationship between convex hesitant fuzzy sets and convex rough sets as their cuts 463 -1
$1 001 umb_un_cat*0269740 $1 200 1 $a Journal of Intelligent & Fuzzy Systems $v Vol. 34, no. 4 (2018), pp. 2099-2102 $1 210 $a Amsterdam $c IOS Press $d 2018 $1 011 $a 1064-1246 $1 011 $a 1875-8967 606 0-
$3 umb_un_auth*0037590 $a fuzzy množiny $X fuzzy sets 606 0-
$3 umb_un_auth*0197306 $a konvexnosť $X convexity 606 0-
$3 umb_un_auth*0136011 $a rough sets 608 $3 umb_un_auth*0273282 $a články $X journal articles 615 $n 51 $a Matematika 675 $a 51 700 -0
$3 umb_un_auth*0001319 $a Janiš $b Vladimír $p UMBFP10 $4 070 $9 1 $f 1963- $T Katedra matematiky 701 -0
$3 umb_un_auth*0031149 $a Montes $b Susana $4 070 $9 49 701 -1
$3 umb_un_auth*0098953 $a Renčová $b Magdaléna $4 070 $9 50 $f 1975- 801 $a SK $b BB301 $g AACR2 $9 unimarc sk T85 $x existuji fulltexy
Number of the records: 1