Number of the records: 1
Hamiltonian and pancyclic graphs in the class of self-centered graphs with radius two
SYS 0262715 LBL 00952^^^^^2200277^^^450 005 20240404133242.5 014 $a 000434257100005 $2 CCC 014 $a 000434257100005 $2 WOS CC. SCIE 014 $a 2-s2.0-85048298783 $2 SCOPUS 017 70
$a 10.7151/dmgt.2042 $2 DOI 035 $a biblio/75993 $2 CREPC2 100 $a 20180913d2018 m y slo 03 ba 101 0-
$a eng 102 $a PL 200 1-
$a Hamiltonian and pancyclic graphs in the class of self-centered graphs with radius two $f Pavel Hrnčiar, Gabriela Monoszová 330 $a The paper deals with Hamiltonian and pancyclic graphs in the class of all self-centered graphs of radius 2. For both of the two considered classes of graphs we have done the following. For a given number n of vertices, we have found an upper bound of the minimum size of such graphs. For n <= 12 we have found the exact values of the minimum size. On the other hand, the exact value of the maximum size has been found for every n. Moreover, we have shown that such a graph (of order n and) of size m exists for every m between the minimum and the maximum size. For n <= 10 we have found all nonisomorphic graphs of the minimum size, and for n = 11 only for Hamiltonian graphs. 463 -1
$1 001 umb_un_cat*0288833 $1 200 1 $a Discussiones Mathematicae Graph Theory $v Vol. 83, no. 3 (2018), pp. 661-681 $1 210 $a Zielona Góra $c Uniwersytet Zielonogórski $d 2018 $1 011 $a 1234-3099 $1 011 $a 2083-5892 606 0-
$3 umb_un_auth*0270022 $a self-centered graph with radius 2 606 0-
$3 umb_un_auth*0270023 $a Hamiltonian graph 606 0-
$3 umb_un_auth*0270024 $a pancyclic graph 606 0-
$3 umb_un_auth*0270025 $a size of graphs 700 -0
$3 umb_un_auth*0002681 $a Hrnčiar $b Pavel $f 1951- $p UMBFP10 $9 50 $4 070 $T Katedra matematiky 701 -1
$3 umb_un_auth*0000108 $a Monoszová $b Gabriela $f 1955- $p UMBFP10 $9 50 $4 070 $T Katedra matematiky 801 $a SK $b BB301 $g AACR2 $9 unimarc sk T85 $x existuji fulltexy
Number of the records: 1