Number of the records: 1  

Regular maps with nilpotent automorphism groups

  1. SYS0194662
    LBL
      
    -----naa--22--------450-
    005
      
    20231211111734.4
    014
      
    $a 000307865600021 $2 WOS CC. SCIE
    014
      
    $a 2-s2.0-84863828494 $2 SCOPUS
    017
    70
    $a 10.1016/j.ejc.2012.06.001 $2 DOI
    100
      
    $a 20140217d2012 m y-slo-03 ----ba
    101
    0-
    $a eng
    102
      
    $a GB
    200
    1-
    $a Regular maps with nilpotent automorphism groups $f Aleksander Malnic, Roman Nedela, Martin Škoviera
    330
      
    $a We study regular maps with nilpotent automorphism groups in detail. We prove that every nilpotent regular map decomposes into a direct product of maps H x K, where Aut (H) is a 2-group and K is a map with a single vertex and an odd number of semiedges. Many important properties of nilpotent maps follow from this canonical decomposition, including restrictions on the valency, covalency, and the number of edges. We also show that, apart from two well-defined classes of maps on at most two vertices and their duals, every nilpotent regular map has both its valency and covalency divisible by 4. Finally, we give a complete classification of nilpotent regular maps of nilpotency class 2.
    463
    -1
    $1 001 umb_un_cat*0309648 $1 011 $a 0195-6698 $1 011 $a 1095-9971 $1 200 1 $a European Journal of Combinatorics $v Vol. 33, no. 8 (2012), pp. 1974-1986 $1 210 $a London $c Academic Press $d 2012
    606
    0-
    $3 umb_un_auth*0036218 $a matematika $X mathematics
    606
    0-
    $3 umb_un_auth*0039537 $a grafy $X charts $X graphs
    606
    0-
    $3 umb_un_auth*0125065 $a regulárne mapy
    606
    0-
    $3 umb_un_auth*0116334 $a regular maps
    615
      
    $n 51 $a Matematika $2 konspekt
    675
      
    $a 51 $v 3. $z slo
    700
    -0
    $3 umb_un_auth*0013387 $a Malnič $b Aleksander $9 34 $4 070
    701
    -0
    $3 umb_un_auth*0001645 $a Nedela $b Roman $p UMBFP12 $9 33 $f 1960- $4 070 $T Inštitút matematiky a informatiky
    701
    -0
    $3 umb_un_auth*0022262 $a Škoviera $b Martin $9 33 $4 070
    801
    -0
    $a SK $b BB301 $g AACR2 $9 unimarc sk
    T85
      
    $x existuji fulltexy
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.