Number of the records: 1
Periodic Solutions of the Lotka-Volterra System of Difference Equations
- Maličký, Peter, 1956- Periodic Solutions of the Lotka-Volterra System of Difference Equations = Periodické riešenia Lotkovho Volterovho systému diferenčných rovníc / Peter Maličký. -- Pre Lotkovo Volterrovo zobrazenie, ktoré zobrazuje na seba trojuholník s vrcholmi (0,0), (4,0) a (0,4) a je definované predpisom F(x,y)=(x(4-x-y),xy), bol dlho otvorený problém vnútorných periodických bodov. Doteraz bol známy iba pevný bod (1,2) a jedna vnútorná periodická orbita s periodou 4. V riešení tohto problému sme urobili podstatný pokrok. Objavili sme hlboký vzťah medzi periodickými bodmi na spodnej strane a vnútornými periodickými bodmi. Zistili sme tiež, že spomínaný problém súvisí s otvorenými problémami teórie čísiel (Artinova hypotéza, Wieferichove prvočísla a prvočísla Sophie Germainovej). For the Lotka-Volterra map, which is defined by F(x,y)=(x(4-x-y),xy) and maps the triangle with vertices (0,0), (4,0) a (0,4) onto itself, the problem of interior periodic ponts was open for a long time. Till now it was known only the fixed point (1,2) and an interior periodic point with period 4. We have made an essential progress in the solution of this problem. We have discovered a deep relation between periodic points on the lower side and interior periodic points. We have also found that the above problem is concerned with some open problems in number theory (the Artin conjecture, Wieferich primes and Sophie Germain primes)
In CDDEA 2010 : abstracts : conference on Differential and difference equations and applications : June 21-25, 2010, Rajecké Teplice Diblík, J.. -- Žilina : University of Žilina, Faculty of Science, 2010. -- ISBN ISBN 978-80-554-0213-0. -- S. 28
1. periodické riešenie 2. periodické body 3. Artinova hypotéza 4. Wieferichovo prvočíslo 5. prvočíslo Sophie Germainovej 6. periodic solution 7. periodic point 8. Artin conjecture 9. Wieferich prime 10. Sophie Germain prime
I. CDDEA 2010 : abstracts conference on Differential and difference equations and applications June 21-25, 2010, Rajecké Teplice. -- S. 28
51
BB301
Number of the records: 1