Number of the records: 1
On the construction of non-invertible minimal skew products
Title On the construction of non-invertible minimal skew products Par.title O konštrukcii neinvertovateľných minimálnych šikmých súčinov Author info Matúš Dirbák, Peter Maličký Author Dirbák Matúš 1983- (50%) UMBFP10 - Katedra matematiky
Co-authors Maličký Peter 1956- (50%) UMBFP10 - Katedra matematiky
Source document Journal of Mathematical Analysis and Applications. Vol. 375, no. 2 (2011), pp. 436-442. - San Diego : Academic Press, 2011 Keywords topologická entropia - topological entropy rozšírenie - extension šikmý súčin trojuholníkové zobrazenia minimálna akcia grupy homogénny priestor súvislej kompaktnej grupy skew product triangular maps minimal group action homogeneous space of a compact connected group Language English Country United States of America systematics 515.1 Annotation Nech X,Z sú nekonečné kompaktné metrické priestory. Ukazujeme, že ak grupa H(Z) homeomorfizmov priestoru Z obsahuje oblúkovo súvislú podgrupu G(Z), ktorej akcia na Z je minimálna, potom každé minimálne zobrazenie f na X (invertovateľné alebo aj neinvertovateľné) pripúšťa minimálne rozšírenie ako šikmý súčin F=(f,g_x) na XxZ s vláknovými zobrazeniami g_x v uzávere podgrupy G(Z). V invertovateľnom prípade tento výsledok bol dokázaný Glasnerom a Weissom roku 1979. Tiež prispievame k opisu triedy C priestorov Z pripušťajúcich grupu G(Z) so spomenutou vlastnosťou. Konkrétne ukazujeme, že táto trieda je uzavretá vzhľadom na spočítateľné súčiny a obsahuje nekonečné spočítateľné súčiny variet, z ktorých nekonečne veľa má neprázdnu hranicu. Ďalej ukazujeme, že podtrieda triedy C tvorená kompaktnými metrickými priestormi Z, ktoré pripúšťajú oblúkovo súvislú grupu izometrií I(Z) s minimálnou akciou na Z sa zhoduje s triedou homogénnych priestorov súvislých kompaktných metrizovateľných grúp. Let X,Z be infinite compact metric spaces. We show that if the group H(Z) of the homeomorphisms of Z has an arc-wise connected subgroup G(Z) whose action on Z is minimal then every minimal map f on X (invertible or not) admits a minimal skew product extension F=(f,g_x) on XxZ with the fibre maps g_x in the closure of G(Z). In the invertible case this was proved by Glasner and Weiss in 1979. We also contribute to the description of the class C of those spaces Z which admit a group G(Z) with the mentioned property. Namely, we show that this class is closed with respect to countable products and contains all countably infinite products of compact connected manifolds, infinitely many of which have nonempty boundary. Further, we show that the subclass of C formed by all compact metric spaces Z which admit an arc-wise connected group I(Z) of isometries with a minimal action on Z coincides with the class of all homogeneous spaces of compact connected metrizable groups Public work category ADC No. of Archival Copy 20204 Repercussion category KOLJADA, Sergij. Topologična dinamika minimalinisti, entropija ta chaos. Kiev : Nacionalina akademija nauk Ukrajini, Institut matematiki, 2011. ISBN 978-966-02-6280-5.
KOLYADA, Sergii - SNOHA, Lubomir - TROFIMCHUK, Sergei. Minimal sets of fibre-preserving maps in graph bundles. In Mathematische Zeitschrift. ISSN 0025-5874, 2014, vol. 278, no. 1-2, pp. 575-614.
DeVRIES, J. Topological dynamical systems : an introduction to the dynamics of continuous mappings. Berlin : DeGruyter, 2014. DeGruyter Studies in Mathematics, vol. 49. 498 p. ISBN 978-3-11-034240-6.
SOTOLA, Jakub - TROFIMCHUK, Sergei. Construction of minimal non-invertible skew-product maps on 2-manifolds. In Proceedings of the American mathematical society. ISSN 0002-9939, 2016, vol. 144, no. 2, pp. 723-732.
Catal.org. BB301 - Univerzitná knižnica Univerzity Mateja Bela v Banskej Bystrici Database xpca - PUBLIKAČNÁ ČINNOSŤ References PERIODIKÁ-Súborný záznam periodika unrecognised
Number of the records: 1