Number of the records: 1
Perfect extensions of de Morgan algebras
SYS 0302050 LBL -----naa--22--------450- 005 20240104073129.1 014 $a 000697070200001 $2 CCC 014 $a 000697070200001 $2 WOS CC. SCIE 014 $a 2-s2.0-85115159465 $2 SCOPUS 017 70
$a 10.1007/s00012-021-00750-5 $2 DOI 035 $a biblio/426861 $2 CREPC2 100 $a 20211005d2021 m y slo 03 ba 101 0-
$a eng 102 $a CH 200 1-
$a Perfect extensions of de Morgan algebras $f Miroslav Haviar, Miroslav Ploščica 330 $a An algebra A is called a perfect extension of its subalgebra B if every congruence of B has a unique extension to A. This terminology was used by Blyth and Varlet [1994]. In the case of lattices, this concept was described by Grätzer and Wehrung [1999] by saying that A is a congruence-preserving extension of B. Not many investigations of this concept have been carried out so far. The present authors in another recent study faced the question of when a de Morgan algebra M is perfect extension of its Boolean subalgebra B(M), the so-called skeleton of M. In this note a full solution to this interesting problem is given. The theory of natural dualities in the sense of Davey and Werner [1983] and Clark and Davey [1998], as well as Boolean product representations, are used as the main tools to obtain the solution. 463 -1
$1 001 umb_un_cat*0302331 $1 011 $a 0002-5240 $1 011 $a 1420-8911 $1 200 1 $a Algebra Universalis $v Vol. 82, no. 4 (2021), art. no. 58, pp. 1-8 $1 210 $a Basel $c Springer Nature Switzerland AG $d 2021 606 0-
$3 umb_un_auth*0289535 $a De Morganova algebra $X De Morgan algebra 606 0-
$3 umb_un_auth*0284648 $a MS-algebra 606 0-
$3 umb_un_auth*0086525 $a rozšírenie $X extension 606 0-
$3 umb_un_auth*0172241 $a Boolean algebra 608 $3 umb_un_auth*0273282 $a články $X journal articles 700 -0
$3 umb_un_auth*0002686 $a Haviar $b Miroslav $p UMBFP10 $4 070 $9 50 $f 1965- $T Katedra matematiky 701 -0
$3 umb_un_auth*0022272 $a Ploščica $b Miroslav $4 070 $9 50 801 $a SK $b BB301 $g AACR2 $9 unimarc sk 856 $u https://link.springer.com/article/10.1007/s00012-021-00750-5 $a Link na plný text 856 $u https://link.springer.com/journal/12/volumes-and-issues/81-4 $a Link na zdrojový dokument T85 $x existuji fulltexy
Number of the records: 1