Number of the records: 1
Exploring the solvatochromism of betaine 30 with ab initio tools
SYS 0249104 LBL 01160^^^^^2200253^^^450 005 20240415135859.7 014 $a 000399312700013 $2 CCC 014 $a 000399312700013 $2 WOS CC. SCIE 014 $a 27982462 $2 MEDLINE 014 $a 2-s2.0-85013339695 $2 SCOPUS 017 70
$a 10.1002/chem.201604619 $2 DOI 100 $a 20170815d2017 m y slo 03 ba 101 0-
$a eng 102 $a DE 200 1-
$a Exploring the solvatochromism of betaine 30 with ab initio tools $e from accurate gas-phase calculations to implicit and explicit solvation models $f Šimon Budzák ... [et al.] 330 $a Betaine 30 is known for the extraordinary solvatochromism of its visible absorption band that goes from lambda=882 nm in tetrachloromethane to lambda=453 nm in water (Delta lambda=similar to 429nm). This large blueshift partly originates from a dramatic decrease of the dipole moment upon excitation. Despite several decades of research, experimental works still disagree on the exact value of the excess dipole moment, the orientation of the dipole moment of the excited-state, the role and amplitude of the change of the polarisability upon excitation as well as on the gas-phase excitation energy. In this work, we present an in-depth theoretical investigation. First, we carefully tested several levels of theory on the model system and next calculated the electric properties of betaine 30 at the CC2 level. Our best estimates are Delta mu = -7 D for the excess dipole moment, that is, a significant decrease but no change of direction, a Delta alpha value of -120 a. u. and a gas-phase vertical excitation energy of 1.127 eV. The implicit solvation models are able to reproduce the experimental trends, with large correlation coefficients for non-hydrogen-bond-donating solvents, the smallest rootmean-square deviation error being reached with the vertical excitation model (VEM). The explicit effective fragment potential method combined with time-dependent density functional theory (TD-DFT) in a QM/MM framework provides accurate estimates for hydrogen-bond-donating solvents, whereas the addition of a dispersion correction is needed to restore the correct solvatochromic direction in tetrachloromethane. 463 -1
$1 001 umb_un_cat*0293238 $1 011 $a 0947-6539 $1 011 $a 1521-3765 $1 200 1 $a Chemistry - A European Journal $v Vol. 23, no. 17 (2017), pp. 4108-4119 $1 210 $a Weinheim $c Wiley-VCH $d 2017 606 0-
$3 umb_un_auth*0265030 $a solvatochromism 606 0-
$3 umb_un_auth*0265032 $a solvatochromizmus 606 0-
$3 umb_un_auth*0265033 $a betain 30 615 $n 66 $a Chemické inžinierstvo 675 $v 66 700 -1
$3 umb_un_auth*0121328 $a Budzák $b Šimon $f 1982- $9 20 $4 070 $p UMBFP08 $T Katedra chémie 701 -1
$3 umb_un_auth*0265034 $a Jaunet-Lahary $b Titouan $4 070 $9 16 701 -1
$3 umb_un_auth*0239902 $a Laurent $b Adéle D. $4 070 $9 16 701 -1
$3 umb_un_auth*0256821 $a Laurence $b Christian $4 070 $9 16 701 -0
$3 umb_un_auth*0002811 $a Medveď $b Miroslav $f 1971- $p UMBFP08 $9 16 $4 070 $T Katedra chémie 701 -1
$3 umb_un_auth*0107850 $a Jacquemin $b Denis $4 070 $9 16 801 $a SK $b BB301 $g AACR2 $9 unimarc sk T85 $x existuji fulltexy
Number of the records: 1