Number of the records: 1  

Topological sequence entropy for maps of the interval

  1. TitleTopological sequence entropy for maps of the interval
    Author infoRoman Hric
    TitleSubtitle Translation : Topologická sekvenciálna entropia zobrazení intervalu
    Author Hric Roman 1970- UMBFP10 - Katedra matematiky
    Source document Proceedings of the American Mathematical Society. Vol. 127, no. 7 (1999), pp. 2045-2052. - Providence : American Mathematical Society, 1999
    Keywords nafukovanie orbít   chaotické zobrazenia   topologická entropia sekvenciálna  
    LanguageEnglish
    CountryUnited States of America
    systematics 517
    Public work category ADC
    Repercussion category CÁNOVAS, JS. On topological sequence entropy of piecewise monotonic mappings. In Bulletin of the Australian matematical cociety. ISSN 0004-9727, 2000, vol. 62, no. 1, pp. 21-28.
    KUANG, Rui - CHENG, Wen-Chiao - LI, Bing. Fractal entropy of nonautonomous systems. In Pacific Journal of Matematics. ISSN 0030-8730, 2013, vol. 262, no. 2, pp. 421-436.
    CÁNOVAS, JS. Topological sequence entropy of interval maps. In Nonlinearity. ISSN 0951-7715, 2004, vol. 17, no. 1, pp. 49-56.
    OPROCHA, Piotr - WILCZYNSKI, Pawel. Topological entropy for local processes. In Journal of differential equations. ISSN 0022-0396, 2010, vol. 249, no. 8, pp. 1929-1967.
    LOPEZ, VJ - PENA, JSC. Computing explicitly topological sequence entropy: the unimodal case. In Annales de l' institute fourier. ISSN 0373-0956, 2002, vol. 52, no. 4, pp. 1093-[1120].
    TAN, Feng - YE, Xiangdong - ZHANG, Ruifeng. The set of sequence entropies for a given space. In Nonlinearity. ISSN 0951-7715, 2010, vol. 23, no. 1, pp. 159-178.
    CÁNOVAS, José Salvador. A guide to topological sequence entropy. In Progress in Mathematical Biology Research. ISSN 0029-9399, 2008, vol. 127, no. 7, pp. 101-139.
    CÁNOVAS, Jose S. Topological entropy in one dimensional dynamics. In Advances in Discrete Dynamics. New York : Nova Science Publishers, 2012. ISBN 978-161209678-0, pp. 115-154.
    MAJEROVÁ, Jana. Correlation integral and determinism for a family of 2(infinity) maps. In Discrete and continuous dynamical systems. ISSN 1078-0947, 2016, vol. 36, no. 9, pp. 5067-5096.
    Catal.org.BB301 - Univerzitná knižnica Univerzity Mateja Bela v Banskej Bystrici
    Databasexpca - PUBLIKAČNÁ ČINNOSŤ
    ReferencesPERIODIKÁ-Súborný záznam periodika
    unrecognised

    unrecognised

Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.