Number of the records: 1  

On a representation of the automorphism group of a graph in a unimodular group

  1. TitleOn a representation of the automorphism group of a graph in a unimodular group
    Author infoIstván Estélyi ... [et al.]
    Author Estélyi István (5%)
    Co-authors Karabáš Ján 1977- (40%) UMBFP05 - Katedra informatiky
    Nedela Roman 1960- (50%)
    Mednykh Alexander 1953- (5%)
    Source document Discrete Mathematics. Vol. 344, no. 12 (2021), pp. [1-4]. - Amsterdam : Elsevier B.V., 2021
    Keywords matematika - mathematics   grafy - charts - graphs  
    Form. Descr.články
    LanguageEnglish
    CountryNetherlands
    AnnotationWe investigate a representation of the automorphism group of a connected graph X in the group of unimodular matrices U(β) of dimension β, where β is the Betti number of graph X. We classify the graphs for which the automorphism group does not embed into U(β). It follows that if X has no pendant vertices and X is not a simple cycle, then the representation is faithful and Aut X acts faithfully on H_1(X,Z). The latter statement can be viewed as a discrete analogue of a classical Hurwitz’s theorem on Riemann surfaces of genera greater than one.
    URLLink na plný text
    Public work category ADM
    No. of Archival Copy50763
    Catal.org.BB301 - Univerzitná knižnica Univerzity Mateja Bela v Banskej Bystrici
    Databasexpca - PUBLIKAČNÁ ČINNOSŤ
    ReferencesPERIODIKÁ-Súborný záznam periodika
    TitleInvariant measures on locally compact spaces and a topological characterization of unimodular Lie groups
    Par.titleInvariantné miery na lokálne kompaktných priestoroch a topologická charakterizácia unimodulárnych Lieových grúp
    Author infoPeter Maličký
    Author Maličký Peter 1956- (100%)
    Source document Mathematica Slovaca. Vol. 38, no. 4 (1988), pp. 345-359. - Bratislava : Slovenská akadémia vied, Matematický ústav SAV, 1988
    Keywords lokálne kompaktný priestor   homeomorfizmy   invariantné miery - invariant measures  
Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.