Number of the records: 1  

On discrete versions of two Accola´s theorems about automorphism groups of Riemann surfaces

  1. TitleOn discrete versions of two Accola´s theorems about automorphism groups of Riemann surfaces
    Author infoMaxim Limonov, Roman Nedela, Alexander Mednykh
    Author Limonov Maksim (33%)
    Co-authors Nedela Roman 1960- (34%) UMBFP05 - Katedra informatiky
    Mednykh Alexander 1953- (33%)
    Source document Analysis and Mathematical Physics. Vol. 7, no. 3 (2017), pp. 233-243. - Cham : Springer Nature Switzerland AG, 2017
    Keywords Riemanove plochy - Riemann surfaces   grafy - charts - graphs   automorphism groups   hyperelliptic graphs   hyperelliptic involutions   harmonic maps  
    LanguageEnglish
    CountrySwitzerland
    systematics 51
    AnnotationIn this paper we give a few discrete versions of Robert Accola’s results on Riemann surfaces with automorphism groups admitting partitions. As a consequence, we establish a condition for γ-hyperelliptic involution on a graph to be unique. Also we construct an infinite family of graphs with more than one γ-hyperelliptic involution.
    Public work category ADC
    No. of Archival Copy41751
    Catal.org.BB301 - Univerzitná knižnica Univerzity Mateja Bela v Banskej Bystrici
    Databasexpca - PUBLIKAČNÁ ČINNOSŤ
    ReferencesPERIODIKÁ-Súborný záznam periodika
    unrecognised

    unrecognised

Number of the records: 1  

  This site uses cookies to make them easier to browse. Learn more about how we use cookies.