Number of the records: 1
Branched cyclic regular coverings over platonic maps
Title Branched cyclic regular coverings over platonic maps Author info Kan Hu, Roman Nedela, Naer Wang Author Hu Kan 1978- (34%)
Co-authors Nedela Roman 1960- (33%) UMBFP12 - Inštitút matematiky a informatiky
Wang Naer 1979- (33%)
Source document European Journal of Combinatorics. Vol. 36 (2014), pp. 531-549. - London : Academic Press, 2014 Keywords matematika - mathematics automorfizmy automorphism groups Language English Country Great Britian systematics 51 Annotation A map is a 2-cell decomposition of a closed surface. A map on an orientable surface is called regular if its group of orientation-preserving automorphisms acts transitively on the set of darts (edges endowed with an orientation). In this paper we investigate regular maps which are regular covers over platonic maps with a cyclic group of covering transformations. We describe all such maps in terms of parametrised group presentations. This generalises the work of Jones and Surowski [G.A. Jones, D.B. Surowski, Cyclic regular coverings of the Platonic maps, European J. Combin. 21 (2000) 333-345] classifying the cyclic regular coverings over platonic maps with branched points exclusively at vertices, or at face-centres. Public work category ADM No. of Archival Copy 28517 Catal.org. BB301 - Univerzitná knižnica Univerzity Mateja Bela v Banskej Bystrici Database xpca - PUBLIKAČNÁ ČINNOSŤ References PERIODIKÁ-Súborný záznam periodika article
Number of the records: 1