Contents

Char	oter 1	
Vec	tor spaces with a scalar product, pre-Hilbert spaces	1
l.1 l.2	Sesquilinear forms Scalar products and norms	1 6
Chai	pter 2	
Hilbert spaces		
2.1	Convergence and completeness	15
2.2	Topological notions	21
Cha	pter 3	
Orthogonality		
3.1	The projection theorem	29
3.2	Orthonormal systems and orthonormal bases	34
3.3	Existence of orthonormal bases, dimension of a Hilbert space	42
3.4	Tensor products of Hilbert spaces	47
Cha	pter 4	
Lir	near operators and their adjoints	50
4.1	Basic notions	50
4.2	Bounded linear operators and functionals	56
4.3	Isomorphisms, completion	63
4.4	Adjoint operator	67
4.5	The theorem of Banach-Steinhaus, strong and weak convergence	74
4.6	Orthogonal projections, isometric and unitary operators	81

xii		Contents
Cha	pter 5	
	osed linear operators	88
5.1	Closed and closable operators, the closed graph theorem	88
5.2	The fundamentals of spectral theory	96
5.3	Symmetric and self-adjoint operators	107
5.4	Self-adjoint extensions of symmetric operators	114
5.5	Operators defined by sesquilinear forms (Friedrichs' extension)	120
5.6	Normal operators	125
Cha	pter 6	
Spe	ecial classes of linear operators	129
6.1	Finite rank and compact operators	129
6.2	Hilbert-Schmidt operators and Carleman operators	136
6.3	Matrix operators and integral operators	149
6.4	Differential operators on $L_2(a, b)$ with constant coefficients	157
Cha	pter 7	
The	e spectral theory of self-adjoint and normal operators	166
7.1	The spectral theorem for compact operators, the spaces $B_p(H_1, H_2)$	166
7.2	Integration with respect to a spectral family	180
7.3	The spectral theorem for self-adjoint operators	191
7.4	Spectra of self-adjoint operators	200
7.5	The spectral theorem for normal operators	210
7.6	One-parameter unitary groups	220
	pter 8	×4.
Self	f-adjoint extensions of symmetric operators	229
8.1	Defect indices and Cayley transforms	229
8.2	Construction of self-adjoint extensions	237
8.3	Spectra of self-adjoint extensions of a symmetric operator	243
8.4	Second order ordinary differential operators	247
8.5	Analytic vectors and tensor products of self-adjoint operators	259
	pter 9	
	turbation theory for self-adjoint operators	269
9.1	Relatively bounded perturbations	269
9.2	Relatively compact perturbations and the essential spectrum	273
9.3	Strong resolvent convergence	282
Cha	pter 10	
Dif	ferential operators on $L_2(\mathbb{R}^m)$	289
	The Fourier transformation on $L_2(\mathbb{R}^m)$	289
	Sobolev spaces and differential operators on $L_2(\mathbb{R}^m)$	
	with constant coefficients	296
10.3	Relatively bounded and relatively compact perturbations	304

Contents	xiii
10.4 Essentially self-adjoint Schrödinger operators	313
10.5 Spectra of Schrödinger operators	323
10.6 Dirac operators	329
Chapter 11	
Scattering theory	337
11.1 Wave operators	337
11.2 The existence and completeness of wave operators	343
11.3 Applications to differential operators on $L_2(\mathbb{R}^m)$	354
Appendix A	
Lebesgue integration	362
A.1 Definition of the integral	362
A.2 Limit theorems	368
A.3 Measurable functions and sets	370
A.4 The Fubini-Tonelli theorem	374
A.5 The Radon-Nikodym theorem	377
Appendix B	
A representation theorem for holomorphic	
functions with values in a half-plane	381
References	387
Index of symbols	390
Author and subject index	392